Neuron Pruning for Compressing Deep Networks Using Maxout Architectures

نویسندگان

  • Fernando Moya Rueda
  • Rene Grzeszick
  • Gernot A. Fink
چکیده

This paper presents an efficient and robust approach for reducing the size of deep neural networks by pruning entire neurons. It exploits maxout units for combining neurons into more complex convex functions and it makes use of a local relevance measurement that ranks neurons according to their activation on the training set for pruning them. Additionally, a parameter reduction comparison between neuron and weight pruning is shown. It will be empirically shown that the proposed neuron pruning reduces the number of parameters dramatically. The evaluation is performed on two tasks, the MNIST handwritten digit recognition and the LFW face verification, using a LeNet-5 and a VGG16 network architecture. The network size is reduced by up to 74% and 61%, respectively, without affecting the network’s performance. The main advantage of neuron pruning is its direct influence on the size of the network architecture. Furthermore, it will be shown that neuron pruning can be combined with subsequent weight pruning, reducing the size of the LeNet-5 and VGG16 up to 92% and 80% respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolutional deep maxout networks for phone recognition

Convolutional neural networks have recently been shown to outperform fully connected deep neural networks on several speech recognition tasks. Their superior performance is due to their convolutional structure that processes several, slightly shifted versions of the input window using the same weights, and then pools the resulting neural activations. This pooling operation makes the network les...

متن کامل

Analysis of Deep Convolutional Neural Network Architectures

In computer vision many tasks are solved using machine learning. In the past few years, state of the art results in computer vision have been achieved using deep learning. Deeper machine learning architectures are better capable in handling complex recognition tasks, compared to previous more shallow models. Many architectures for computer vision make use of convolutional neural networks which ...

متن کامل

A representer theorem for deep neural networks

We propose to optimize the activation functions of a deep neural network by adding a corresponding functional regularization to the cost function. We justify the use of a second-order total-variation criterion. This allows us to derive a general representer theorem for deep neural networks that makes a direct connection with splines and sparsity. Specifically, we show that the optimal network c...

متن کامل

Improving Deep Neural Networks with Probabilistic Maxout Units

We present a probabilistic variant of the recently introduced maxout unit. The success of deep neural networks utilizing maxout can partly be attributed to favorable performance under dropout, when compared to rectified linear units. It however also depends on the fact that each maxout unit performs a pooling operation over a group of linear transformations and is thus partially invariant to ch...

متن کامل

Deep Maxout Networks Applied to Noise-Robust Speech Recognition

Deep Neural Networks (DNN) have become very popular for acoustic modeling due to the improvements found over traditional Gaussian Mixture Models (GMM). However, not many works have addressed the robustness of these systems under noisy conditions. Recently, the machine learning community has proposed new methods to improve the accuracy of DNNs by using techniques such as dropout and maxout. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017